
Introduction to
Cryptoeconomics



What is cryptoeconomics?



Cryptoeconomics is about...

● Building systems that have certain desired properties
● Use cryptography to prove properties about messages 

that happened in the past
● Use economic incentives defined inside the system to 

encourage desired properties to hold into the future



Bitcoin: Desired properties

● Create a chain of blocks
● Include transactions in each block
● Maintain a “state” (UTXO set)

○ Transactions affect state: s’ = STF(s, tx)
● Maintain a clock



Bitcoin: Desired properties

● Convergence: new blocks can be added to the chain but 
blocks cannot be replaced or removed

● Validity:
○ Only txs that satisfy a predicate VALID(s, tx) with 

respect to the state at time of execution should be 
included in a block

○ Clock should be roughly increasing



Bitcoin: Desired properties

● Data availability: it should be possible to download full 
data associated with a block

● Availability: transactions should be able to get quickly 
included if they pay a reasonably high fee



Bitcoin: Desired properties



Bitcoin: Cryptography

● Proof of work
● Signatures (prove tx sender authenticity)
● Hashes

○ Ensure consistent total ordering of chain
○ Enable (limited) light client protocol via Merkle 

proofs



Bitcoin: Incentives

● Miner of block that gets into the chain gets 12.5 BTC, 
plus can extract rent from being “temporary dictator” 
over tx inclusion

● Miner of block that does not get into the chain gets 
nothing

● Difficulty adjustment: rewards are marginally long-run 
zero sum



Cryptography



Uses of cryptography

● Hashes: prove topological order of messages
● Signatures: prove the identity of the sender of a message
● ZKPs: prove arbitrary computable predicates on 

messages



More crypto

● Proof of work: prove that a certain amount of expected 
computational effort was expended

● Erasure codes: convert a 100% data availability 
requirement into a 50% data availability requirement

● Timelock crypto / sequential PoW: prove that some 
amount of time elapsed between messages A and B

● Homomorphic encryption / obfuscation: convert 
functions into isomorphic functions that are more 
privacy-preserving



Economics



Incentives

● Tokens: incentivize actors by assigning them units of a 
protocol-defined cryptocurrency
○ eg. block rewards

● Privileges: incentivize actors by giving them 
decision-making rights that can be used to extract rent
○ eg. transaction fees



Incentives

● Rewards: increase actors’ token balances or give them 
privileges if they do something good

● Penalties: reduce actors’ token balances or give them 
privileges if they do something bad



Concepts

● Cryptoeconomic security margin: an amount of money 
X such that you can prove “either a given guarantee G is 
satisfied, or those at fault for violating G are poorer than 
they otherwise would have been by at least X”

● Cryptoeconomic proof: a message signed by an actor 
that can be interpreted as “I certify that either P is true, 
or I suffer an economic loss of size X”



Concepts

● Uncoordinated choice model: a model that assumes 
that all participants in a protocol do not coordinate with 
each other and have separate incentives, and are all 
smaller than size X

● Coordinated choice model: a model that assumes that 
all actors in a protocol are controlled by the same agent 
(or coalition)



Concepts

● Bribing attacker model: a model that starts off with an 
uncoordinated choice assumption, but also assumes that 
there is an attacker capable of making payments to 
actors conditional of them taking certain actions
○ Budget: the amount that the briber must be willing 

to pay in order to execute a particular strategy
○ Cost: the amount that the briber actually does pay if 

the strategy succeeds



Example: Schellingcoin

● Property: provide the “true answer” to a given question
○ eg. who won the election?

● Algorithm:
○ Everyone votes A or B
○ Majority answer is taken as correct
○ Everyone who voted with majority given reward of P, 

all others get nothing



Example: Schellingcoin

● Uncoordinated choice: you have the incentive to vote the 
truth, because everyone else will vote the truth and you 
only get a reward of P if you agree with them

● Why will everyone else vote the truth? Because they are 
reasoning in the same way that you are!



P + epsilon attack

You vote 0 You vote 1

Others vote 0 P 0

Others vote 1 0 P

You vote 0 You vote 1

Others vote 0 P P + ε

Others vote 1 0 P

A bribing attacker can corrupt the Schellingcoin game with a 
budget of P + ε and zero cost!

Base game:

With bribe:



Example: proof of work

● You get in the main chain, 12.5 BTC reward
● You do not get in the main chain, no reward.

● Same strategy as P+epsilon attack can be used in the 
bribing attacker model!



Griefing factors

● Even in an incentive-compatible protocol, there will 
almost always be opportunities to, at some cost to 
yourself, impose costs on others

● If it costs you $1 to harm someone else by $X, that’s a 
griefing factor of X



Griefing factors

● Griefing factors depend on:
○ Model (coordinated choice vs uncoordinated vs 

bribing)
○ Size of an actor
○ How often the griefing opportunities appear



Faults

● We can view faults at several levels:
○ Faults of the protocol, ie. the protocol not perfectly 

satisfying its desired properties
○ Faults of individual actors in the protocol
○ Faults of the network



Faults

● It is in many cases easy to measure protocol faults
○ Blockchain case: stale/uncle rate

● In some cases it’s possible with qualifications
○ Timestamps

● In some cases it’s not possible directly
○ Censorship (selectively denying transactions the 

ability to get included)



Categorization of faults

● Define a protocol as a function P(M, aux) => msg, 
where:
○ M is the set of protocol messages already received
○ aux is auxiliary data (eg. clock, real-world knowledge)
○ msg is the message that the node sends



Categorization of faults

● Invalidity: a message is not the result of P(M, aux) for 
any aux and any subset of the messages that the node 
saw

● Equivocation: two messages m1, m2 where:
○ m1 = P(M1, aux1)

○ m2 = P(M2, aux2)

Where M2 does not contain M1 + m1, and M1 does not 
contain M2 + m2



Categorization of faults

● Ignoring/delaying inputs: (consistently) pretending that 
some message that actually arrived at time T1 did not 
arrive until some later time T2 (possibly T2 = ∞)

● Not sending/delaying outputs: not sending a given 
message, or sending it later than intended

● Using false values of aux
○ Special case: sending messages too early

● Network faults (latency, dropping messages)



Fault assignment

● Given a protocol fault, we can often narrow down why 
the fault took place, at least to within one of several 
causes



Example: blockchain fork

● Case 1: B ignored C and/or D
● Case 2: C ignored B
● Case 3: C did not send to B
● Case 4: B did not send to C
● Case 5: network fault



Principles of penalty assignment

1. Maximum penalty upon conviction: If you can 
unambiguously prove that one specific party is faulty, 
penalize that party maximally

2. If you can’t choose, penalize all (slightly): if fault 
assignment tells you that one of N parties are faulty, 
penalize all N (though not as much)

3. Pay for performance: total rewards should be an 
increasing function of some metric of “protocol quality”



Penalty assignment

● Example reward assignment:
○ A: +1
○ B: 0 (or -1 in a PoS protocol)
○ C: 0 (or -1 in a PoS protocol)
○ D: +1



Benefits

● We know that if someone is faulty in a way that causes 
protocol failure, they will be punished

● Innocents may be punished too; bounding griefing 
factors is a good way to analyze to make sure this is not 
too much of a problem

● Selfish mining issues are much easier to resolve



Proof of stake

● Relies on a consensus algorithm using signatures signed 
by bonded validators

● Properties
○ Safety (finalized blocks don’t get un-finalized)
○ Liveness (as in proof of work)

● Cryptoeconomic security margin very high because we 
can rely on penalties, and not just rewards



Naive PoS: nothing at stake



Slasher: solution 1 (penalize equivocation)



Slasher: solution 2 (penalize being wrong)



Auditable safety

● Cryptoeconomic version of BFT safety
● Definition: if conflicting values A and B are both 

finalized, then:
○ At least ⅓ of bonded validators were faulty
○ We know whom to blame



Auditable safety ~= asynchronous BFT safety

● Invalidity and equivocation are provable faults
● Message delays and lying about timestamps 

indistinguishable from latency
○ Sending/receiving messages too late ~= network 

delay
○ Sending messages too early ~= “stretch” all clocks by 

factor M, explain all newly created discrepancies with 
network delay



Plausible liveness

● Cryptoeconomic version of BFT liveness
● Definition: unless there already have been ⅓ provable 

faults, there exists a set of messages that ⅔ of validators 
could send to finalize one of a set of options



Plausible liveness ~= partially synchronous BFT 
liveness

● Same logic as before: all faults are either provable or 
indistinguishable from latency

● At any point, nodes can cease to be faulty (ie. latency 
back to normal), and finalize a block



Data availability

● Important in scalable/sharded blockchains, where 
individual nodes cannot download all data for 
themselves

● If data is available, then proving correctness is easy via 
interactive protocols

● But if data is unavailable, it is harder



Data availability

● Problem: you cannot unambiguously show fault
● The following are indistinguishable:

○ Case 1: node X published data D at time T3 instead of 
T1, node Y correctly notified you at time T2

○ Case 2: node X published data D at time T1, node Y 
lied at time T2 about the data’s unavailability



Data availability

● Problem: how do we finalize a state when we can’t 
personally verify its correctness?

● Computation:
○ zk-SNARKs
○ Interactive games / challenge-response protocols

● Data-availability: ???



Data availability

● Option 1: honest-minority assumption
○ 15% of a randomly selected subset of a network can 

hold data back from being finalized indefinitely
○ We assume that these 15% are not colluding with the 

other 85% and are not taking bribes
○ If a conflict over whether or not data is available 

emerges, both publisher and challenger penalized
● Option 2: erasure coding



Open problems

● Optimal properties of consensus algorithms
● Censorship resistance
● Maximally accurate timestamping
● Scalable validation
● Optimal data availability solutions


