Introduction to
Cryptoeconomics

What is cryptoeconomics?

toeconomics is about...

. Bulldlng systems that have certain deS| /

Use cryptography to prove properties about message: .
" that happened in the past

) Use economic incentives defined inside the system to
~encourage desired properties to hold into the future

bin: Desired properties

~ Create a chain of blocks
' Include transactions in each block
® Maintain a “state” (UTXO set)

. o Transactions affect state: s> = STF(s, tx)
“Maintain a clock

oin: Desired prob [T

¢ Convergence: new blocks can be / .

. blocks cannot be replaced or removed
» Validity:

" o Only txs that satisfy a predicate VALID(s, tx) with
.~ respect to the state at time of execution should be
~included in a block

lock should be roughly increasing

: Desired properti

3 ‘Data availability: it should be possib'l'eﬁ \

* data associated with a block T
» Availability: transactions should be able to get qmckly -
*included if they pay a reasonably high fee

Block 5624 Block 5626

Time: 135762214 ' Time: 135763321
Nonce: 581512551 Nonce: 2092352335

Prevhash: 0fc8125b6ed4 Prevhash: 8ef2752b7bc3

in: Cryptography

S |:-"

* Proof of work -
'e Signatures (prove tx sender authenticity)
» Hashes

. o Ensure consistent total ordering of chain
.o Enable (limited) light client protocol via Merkle
- proofs

vin: Incentives

8 Miner of block that gets into the chain get: _
* plus can extract rent from being “temporary dictator”™
over tx inclusion

. Miner of block that does not get into the chain gets
_nothing

ifficulty adjustment: rewards are marginally long-run
sum

i

ll

Cryptography

of cryptography

Hashes prove topological order oF mes
. Signatures: prove the identity of the sender of a
® ZKPs: prove arbitrary computable predicates on
. messages

b,

i

rpto -

® Proof of work: prove that a certain amount of
~ computational effort was expended
Erasure codes: convert a 100% data availability

. requirement into a 50% data availability requirement
. Timelock crypto / sequential PoW: prove that some
imount of time elapsed between messages A and B
momorphic encryption / obfuscation: convert

ns into isomorphic functions that are more

rving

VY e

Economics

ves e

/f
/

> ‘“Tokens: incentivize actors by assignir'\d her
protocol-defined cryptocurrency |
o eg. block rewards

» Privileges: incentivize actors by giving them

" decision-making rights that can be used to extract rent
) eg. transaction fees

~ Rewards: increase actors’ token bala'hz
& privileges if they do something good S —

» Penalties: reduce actors’ token balances or give them
* privileges if they do something bad

e Cryptoeconomic security margin: an amoui to

~ X such that you can prove “either a given guarantee G i
" satisfied, or those at fault for violating G are poorer than
¢ they otherwise would have been by at least X"
Cryptoeconomic proof: a message signed by an actor
hat can be interpreted as “I certify that either P is true,
ul er an economic loss of size X"

pts

il Uncoordinal:ed choice model: a mo:il. ' .;,_/

that all participants in a protocol do not coordinate wi
. each other and have separate incentives, and are all

. smaller than size X

. Coordinated choice model: a model that assumes that
l actors in a protocol are controlled by the same agent

0 C tion)

cepts -

® Bribing attacker model: a model that sta A e
" uncoordinated choice assumption, but also assumes
there is an attacker capable of making payments to
~ actors conditional of them taking certain actions

. 0 Budget: the amount that the briber must be willing
A to pay in order to execute a particular strategy
Cost: the amount that the briber actually does pay if

trategy succeeds

np Schellingi -

3 Property: provide the “true answer” t'o“' / |
" 6 eg. who won the election? -
Algorithm:
.~ © EveryonevotesAorB
L o Majority answer is taken as correct

) Everyone who voted with majority given reward of P,
L others get nothing

ll

wple: Schellingcoin

® Uncoordinated choice: you have the / |
truth, because everyone else will vote the truth and you
~ only get a reward of P if you agree with them
' - Why will everyone else vote the truth? Because they are

L reasoning in the same way that you are!

apsilon attack —

B

| fibing attacker can corrupt the Sche
tbudget of P + € and zero cost!

You vote 0 You vote 1

Base game: Others vote 0 P 0
kL Others vote 1 0 P

You vote 0 You vote 1

Others vote 0 P P+¢

Others vote 1 0 P

nple: proof of work

You get in the main chain, 12.5 BTC re
You do not get in the main chain, no reward

o
— 2061 2062

rategy as P+epsilon attack can be used in the

ar model!

e

2059 B

2060

Fing Factors

}¢ Even in an incentive-compatible protocol, the
~ almost always be opportunities to, at some costto
- yourself, impose costs on others

L If it costs you $1 to harm someone else by $X, that's a
igriefing Factor of X

ale Féctors

. Grleﬁng Factors depend on:

© o0 Model (coordinated choice vs uncoordlnated Vs
' bribing)

. o Size of an actor

© How often the griefing opportunities appear

S |:-"

~ We can view faults at several levels: -
o Faults of the protocol, ie. the protocol not per ec
satisfying its desired properties

Faults of individual actors in the protocol

‘0 Faults of the network

‘ |Eis in many cases easy to measure e/ aul
" o Blockchain case: stale/uncle rate

In some cases it's possible with qualifications
. o Timestamps

1 some cases it's not possible directly

. Censorship (selectively denying transactions the
vility to get included)

gorization of Faults

'@ Define a protocol as a function P(M, aux) => &
~ where:
. 0 Misthe set of protocol messages already received
. o aux is auxiliary data (eg. clock, real-world knowledge)
10 msg is the message that the node sends

gorization of faults

‘Invalidity: a message is not the result of P(M, &
~ any aux and any subset of the messages that the node™
saw

y Equivocation: two messages m1, m2 where:

0 ml = P(M1, auxl)

m2 = P(M2, aux2)

> does not contain M1 + m1, and M1 does not
.

.

Y

agorization of faults

\ Ignoring/delaying inputs: (consistentl etend

some message that actually arrived at time T1didnot ™
*arrive until some later time T2 (possibly T2 = «)

® Not sending/delaying outputs: not sending a given
Lmessage, or sending it later than intended

)sing false values of aux

pecial case: sending messages too early

k Faults (latency, dropping messages)

VY e

. signment -

' leen a protocol Fault, we can often narro)
" the Fault took place, at least to within one oF severs
~causes

I|‘ ‘
1

mple: blockchain FOTR

A

" Case 1: B ignored C and/or D
ase 2: Cignored B
3: Cdid not send to B
b I not send to C

<

bles of penalty assignr

. Maximum penalty upon conviction: Ifyou can
* unambiguously prove that one specific party is Faulty,
. penalize that party maximally
. If you can’t choose, penalize all (slightly): if Faulkt
SS|gnment tells you that one of N parties are faulty,
nalize all N (Ehough not as much)
for performance: total rewards should be an
g function of some metric of “protocol quality”

VY e

ty assignment

el

P
e

Example reward assignment:

A +1

. 0 (or -1 in a PoS protocol)
(o -1 in a PoS protocol)

8 We know that if someone is faulty in a wa _;“_’_ _
* protocol failure, they will be punished
Innocents may be punished too; bounding griefing
- factors is a good way to analyze to make sure this is not
" too much of a problem

elfish mining issues are much easier to resolve

F o PPtake

® Relies on a consensus algorithm using signatu

" by bonded validators
» Properties

. o Safety (finalized blocks don’t get un-finalized)
= o Liveness (as in proof of work)

I yptoeconomic security margin very high because we
rely on penalties, and not just rewards

0S: nothing at stake

> on neither Vote on A Vote ¢
-~ EV=0

, .slution1 (allze equiv

> on neither Vote on A Vote on

, .slution 2 (penalize being

ote on neither Vote on A VoteonB “
\ i EV=01-09%5=-44

table safety

Cryptoeconomlc version of BFT safety

'e Definition: if conflicting values A and Bare both
* finalized, then:

o At least 5 of bonded validators were Faulty
o We know whom to blame

¥
o
RO

o= .le Safety ~= a hronous

eyl 1S

® Invalidity and equivocation are provable' -
Message delays and lying about timestamps
indistinguishable from latency

. o Sending/receiving messages too late ~= network

. delay

) ‘Sending messages too early ~= “stretch” all clocks by
Factor M, explain all newly created discrepancies with

jork delay

ible liveness

Cryptoeconomlc version of BFT l|venes A

‘e Definition: unless there already have been v provable
I. fFaults, there exists a set of messages that % of valldators
. could send to finalize one of a set of options

J b

sible liveness ~= part
Ness

Same logic as before: all faults are either provable'or
" indistinguishable from latency

' - At any point, nodes can cease to be faulty (ie. latency
' back to normal), and finalize a block

s availabilty

/

-'Important in scalable/sharded blockcha
" individual nodes cannot download all data For "
themselves

) If data is available, then proving correctness is easy via
Linteractive protocols

Ut if data is unavailable, it is harder

=

vailability

® Problem: you cannot unambiguously sh / _

The following are indistinguishable: T

= o Case 1: node X published data D at time T3 mstead of
. T1, node Y correctly notified you at time T2

. o Case 2: node X published data D at time T1, node Y

A lied at time T2 about the data’s unavailability

 availability

| Problem how do we finalize a state wh Wi
* personally verify its correctness?

» Computation:

. 0 zk-SNARKs

' 0 Interactive games / challenge-response protocols
)ata-availability: ???

2 availability .

" e

_ ' Optlon 1: honest-minority assumptlon e L
0 15% of a randomly selected subset oF 2 networeIm
hold data back from being finalized indefinitely
We assume that these 15% are not colluding with the
. other 85% and are not taking bribes
> If a conflict over whether or not data is available
emerges, both publisher and challenger penalized
2: erasure coding

) problems

Optlmal properties of consensus algorl h ‘
\ Censorship resistance -
» Maximally accurate timestamping

» Scalable validation

Optimal data availability solutions

